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The structural and thermodynamic properties of MgF2 have been investigated in a wide range of pressures
(0-80 GPa) and temperatures (0-850 K) by coupling quantum-mechanical ab initio perturbed ion calculations
with a quasi-harmonic Debye model. The room temperature, zero-pressure structural parameters and lattice
energy are computed with errors smaller than 2% when correlation energy corrections are incorporated in the
calculation. Our computed equation of state is compatible with direct measurements of the bulk modulus
and obeys universalp-V relations. We have simulated the rutile-to-fluorite phase transition during the loading
process and have found lower (=4 GPa) and upper (=45 GPa) bounds for the transition pressure by means
of thermodynamic and mechanical criteria for phase stability. Bonding properties and their change with
pressure have been derived through a topological analysis of the electron density using Bader’s theory of
atoms in molecules. This analysis reveals that MgF2 is a highly ionic compound. Its ionicity decreases
linearly with increasing pressure and, as in other ionic compounds, the crystal shows anion-anion bonds.

I. Introduction

Although the observable properties of MgF2 have been
experimentally explored over the years,1-13 theoretical simula-
tions on this crystal have been scarce and usually limited to
fixed values of pressure (p) and/or temperature (T). Early
simulations based on interionic potentials were concerned with
cohesive, static properties (T ) 0, and zero-point vibrational
effects neglected) atp ) 0.14,15 Recently, Kim, and Choo16

minimized the total energy in the rutile phase at static conditions
and calculated harmonic-lattice dynamical properties at the
optimized geometry using empirical potentials. As these authors
point out, such work should be extended to analyze the
anharmonicity effects on the structural and dynamical properties
and to explore the pressure-induced rutile to fluorite phase
transition. This transition has been recently studied at a fixed
T in terms of empirical potentials using lattice dynamics17 and
molecular dynamics18 techniques. These two approaches give
very different values for the transition pressure.
Crystal simulations have also been reported from pure

quantum-mechanical methods, the more detailed study of this
sort being that of Catti et al.19 They have computed structural
parameters and elastic constants of MgF2 with the Hartree-
Fock (HF) method implemented in the program CRYSTAL.
Their calculations, in the static, zero-pressure approximation,
partially optimize the geometrical parameters of the rutile phase
and include correlation energy corrections at the final stage.
The study of these works suggests the necessity of extending

the theoretical analysis of the structural stability, equation of
state, and electron density of this important material.
We present in this paper the results of an investigation on

these three questions. Our approach is totally nonempirical and
combines HF plus electron correlation calculations of the
electronic structure, the determination of the equation of state
and other thermodynamic properties in a wide range of pressure
and temperatures, and a rigorous analysis of the electron density.
The necessary theoretical tools to undertake this approach
include: (a) static ab initio perturbed ion (aiPI) calculations,

with correlation energy corrections,20,21to optimize the structural
parameters of MgF2 from p ) 0 GPa top ) 80 GPa; (b) a
quasi-harmonic Debye model, based on the quantum-mechanical
energy-volume function, to compute the vibrational contribu-
tions to the thermodynamic properties of this crystal; and (c) a
topological analysis of the crystal electron density using Bader’s
Atoms in Moleculestheory,22 as adapted by our group to the
study of periodic systems.23,24 From this analysis we compute
ionic shapes, volumes, and charges, as well as their change with
pressure.
We examine in detail the advantages and limitations of this

nonempirical approach by discussing its performance in the
determination of a variety of structural, thermodynamic, and
bonding properties of this material. We show that a crystal
with three structural degrees of freedom can be analyzed from
first principles in a way that permits the interpretation of
thermodynamic experimental information obtained from dif-
ferent sources. The equation of state at finiteT can be computed
in agreement with (p,V,T) data and direct observations of the
bulk modulus. The variation of the crystal ionicity with applied
pressure can be predicted from the analysis of the electronic
density. We also see that the quantum-mechanical method
adopted here needs further improvements to accurately deal with
nonspherical ionic charge distributions and crystal polarization.
The simulation techniques are described in subsections II.A,

B, and C. Results for the static structural and thermodynamic
properties at zero pressure are discussed in subsection III.A.
Subsections III.B and III.C are dedicated to analyze the equation
of state and the pressure-induced rutile-to-fluorite phase transi-
tion, respectively. The main findings concerning the topological
atomic properties are presented in subsection III.D. We
summarize our conclusions in section IV.

II. Simulation Techniques

A. Total Energy Calculations and Geometry Optimiza-
tions. MgF2 crystallizes in the rutile phase at ambient condi-
tions. This structure belongs to the tetragonal space group

1595J. Phys. Chem. A1998,102,1595-1601

S1089-5639(97)02516-4 CCC: $15.00 © 1998 American Chemical Society
Published on Web 02/07/1998



P42/mmmwith two molecules in the unit cell. The positions
of the two Mg atoms are fixed at the symmetry sites (0,0,0)
and (1/2,1/2,1/2), and the four F atoms are placed at (u,u,0),
(-u,-u,0),(1/2-u,1/2+u,1/2), and (1/2+u,1/2-u,1/2), u being a
fractional coordinate. This space group is characterized by three
geometrical parameters: the two unit cell lengths (a,c) and the
internal coordinateu. From now on, we will refer collectively
to the set [a,c,u] as xb.
Given a value ofxb, we compute the total energy of the MgF2

crystal by solving the localized Hartree-Fock (HF) equations
implemented in theaiPI model.20,21 As in previous calculations
within this theoretical scheme,25 we employ the nearly-HF,
multi-ú exponential basis sets of Clementi and Roetti,26 and
estimate the correlation energy through the unrelaxed Coulomb
Hartree-Fock approximation (uCHF).27

As a first step, we perform a static simulation both at the HF
and HF+uCHF levels. In these calculations, the Gibbs energy
at a given pressurep (Gstatic(xb;p) ) Elatt(xb) + pV(xb)) is minimized
simultaneously with respect to the three geometrical parameters
contained inxbby means of a modified multidimensional Powell
algorithm,28 taking into account that thepV term does not depend
on u. In the above expressions,Elatt(xb) is evaluated as the
difference between the total energy per unit formula of the
crystal and the energy of the isolated ions (Mg2+ + 2 F-).
Our procedure goes beyond previous quantum-mechanical

zero-pressure computations in this crystal19 in two important
points: (i) effects of correlation energy corrections are included
at eachxb point in the optimization process and not only at the
HF optimized configuration and (ii) the minimization search is
direct, three-dimensional, and does not use any experimental
parameter. By repeating our optimization process for different
p’s we obtain the pressure dependence ofxb and the static
equation of state (EOS) through theV(xb) ) 1/2(a2c) relation.
In a second step, we generate thermodynamic results at finite

temperatures using a Debye-type model that is detailed in the
next subsection. The input for this model is a set of (Elatt,V)
points which cover a volume range∼-30% to∼+50% of the
static equilibrium volume at zero pressure,V0. For volumes
greater thanV0, we obtain (Elatt,V) pairs by minimizingGstatic

with negative pressures.
B. Thermal Effects. We have chosen a Debye-like model

to take into account the vibrational motion of the lattice. Our
scheme, while retaining the simplicity of the original Debye
model, follows a quasi-harmonic approach, making the Debye
temperatureΘ dependent upon the volume of the crystal. At
every volumeV, Θ(V) is rigorously defined in terms of the
elastic constants through a spherical average of the three
components of the sound velocity. The latter may be obtained
by solving the Christoffel equations of the crystal.29 Compu-
tationally, however, this procedure would imply the accurate
calculation of all the independent elastic constants of the crystals
at every pressure of interest. This is a highly demanding task,
and has been simplified through the isotropic approximation,
which allows to evaluateΘ using the expression30

wherep is the reduced Planck constant,kB is the Boltzmann
constant,M the molecular mass of the compound,r the number
of atoms per molecular unit (r ) 3 in the case of MgF2 crystal),
BS the adiabatic bulk modulus of the crystal, andσ the Poisson
ratio.30 This property is crystal dependent and changes slightly
with T andp. In order to avoid theσ-dependence ofΘ, we set

σ ) 0.25, the value of the Cauchy solid.30 This value is close
to that obtained by Kandill et al.31 from room temperature
ultrasonic experiments on single crystals (σ ) 0.271).
The explicit expression forf(σ) in eq 1 is30

This function decreases almost linearly withσ in the vicinity
of σ ) 0.25 and it takes the valuef(σ ) 0.25)) 0.859 95, that
should be compared withf(σ ) 0.271)) 0.818 26. In the
explored temperature range, the computed values ofV0 andB0
(see below) change by less than 0.4% and 1.0%, respectively,
in going fromσ ) 0.2 toσ ) 0.3.
In eq 1, BS depends onV and T. In order to balance

computational demand and accuracy, we have introduced a
further approximation that reducesΘ to a function ofV:

whereBstatic is the static bulk modulus. It is evident from eqs
1 and 3 that there is no explicit consideration of the geometrical
parametersxb in the volume derivatives, since we restrict
ourselves to hydrostatic conditions. This relevant feature of
the model makes it fully independent of any particular crystal
structure. Even if the crystal energy depends on many internal
parameters and cell constants, a set of pairs (Elatt,V) is sufficient
to run the model. The approach has its main drawback in the
fact that the geometrical parameters are functions of the volume
only. This is equivalent to assume that thermal dilatation
changes the structural parameters of a crystal in the same way
as a hydrostatic expansion does.
In order to obtain the equilibrium volume at constantp and

T, we minimize the Gibbs function with respect toV. The
nonequilibrium Gis given by

whereFvib is the vibrational Helmholtz function, including zero-
point contributions, as given by the Debye model. TheV(T,p)
curve or EOS is implicitly defined by the relation:

and the isothermal bulk modulus is given by

In order to simplify the minimization and derivation processes
involved in eqs 5 and 6, it is convenient to fit an appropriate
analytical function ofV to the numerically computed values of
G*(V;T,p).32 From this function, the Debye temperature at
V(T,p) and all the vibrational properties (Uvib, Cv,vib, Fvib, and
Svib) are immediately computed. Moreover, since our Debye
temperature depends only on volume, the Mie-Grüneisen
equation applies to our model, and the Gru¨neisen constantγ
and other experimentally available properties such as the thermal
expansivity (R), the adiabatic bulk modulus (BS), and the isobaric
heat capacity (Cp) may be readily obtained.
C. Bader Topological Analysis. Bader’s theory ofAtoms

in Molecules22 has probably provided the first sound foundation
to the phenomenological models of chemical bonding. Briefly,

f(σ) ) {3[2(23 1+ σ
1- 2σ)

3/2
+ (13

1+ σ
1- σ)

3/2]-1}1/3 (2)

BS = Bstatic) V(d2Elatt(V)dV2 ) (3)

G*(V;T,p) ) Elatt(V) + pV+ Fvib(T,Θ(V)) (4)

(dG*(V;T,p)dV ) ) 0 (5)

BT(T,p) ) V(T,p)(d2G*(V;T,p)dV2 ) (6)

Θ ) p
kB
[6π2V1/2r]1/3xBS

M
f(σ) (1)
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the method originates in the fact that the laws of quantum
mechanics hold in localized regions of space surrounded by
surfaces whose flux of the gradient of the electron density
vanishes. These topological regions are usually associated to
one nucleus, so an unambiguous definition of an atom in a
molecule appears. The method shows that integration of
appropriate operators over those atomic regions gives rise to
additiveatomic properties. Moreover, different types of critical
points of the electron density are associated to different bonding
features. Objective answers to the question of when two atoms
are bonded are so obtained.
We have recently investigated23,24 the application of this

theory to periodic crystalline systems. We simply recall here
that finding the whole set of critical points of a crystalline
structure is not an easy task. One of the main difficulties lies
on the large number of critical points that must be obtained in
a very small volume and in the low value of the electron density
that may be found in some bonding regions, particularly in ionic
crystals. Visualization of the actual atomic shapes makes it
necessary to use computational geometry tools to fully under-
stand the organization and relations among volumes in three-
dimensional space. To face both problems, we have constructed
an efficient code23 for determining automatically topological
properties of simple structures and producing source data to
feed high-performance rendering programs. This technology
has been used to analyze the topology of the electron density
of MgF2 in its rutile phase and to follow its change with
pressure.

III. Results and Discussion

A. Zero-Pressure Structural and Thermodynamic Prop-
erties. First, we will briefly discuss the static properties of
MgF2, as a preliminary stage to the study of its thermal behavior.
The static HF and HF+uCHF calculations produce two different
sets of equilibrium values forxb and Elatt. These results are
collected in Table 1 with other calculated and experimental
values. Our values are consistent with the expected effects of
the correlation energy: a reduction of the cell constants and
the crystal energy. Inclusion of the correlation energy correction
lowers the molecular volume by some 9%, and the lattice energy
by about 174 kJ/mol. The internal coordinateu and thec/a
ratio are quite insensitive to this correction.
Our static HF lattice parameters are higher than those

computed by Kim and Choo.16 This result is normally observed
when comparing HF results with those deduced from empirical
potentials. The staticaiPI results and those of Cattiet al.19

give lattice parameters larger than the values observed at room
temperature. The HF+uCHF description corrects this deviation
and it is an adequate starting stage for the inclusion of thermal
effects. Moreover, as Figure 1 reveals, a quantitative agreement
with the experimentalV(T) data can only be achieved when

correlation corrections are included. Thus, we will concentrate
in the HF+uCHF results in the rest of this subsection.
In the Debye-like model used here, the second derivative of

Elatt determinesΘ as a function ofV. We findΘ ) 713 K at
the static equilibrium volume andΘ ) 680 K at 300 K.
Following the exact procedure commented in subsection II.A,
we have derived from the elastic data of Jones10 anexperimental
room temperature valueΘexptal ) 614 K.
The increase ofa, c, andElatt due to thermal effects leads to

discrepancies smaller than 2% with the experimental structural
parameters.7 Elatt deviates 1.3% from the observed value of
2957 kJ/mol.33 A comparison with the static results shows that
two thirds of the thermal increase in the cell size is due to zero-
point contributions. InElatt the zero-point energy (20 kJ/mol)
accounts for 71% of the difference between the static and the
300 K calculations. The computed normal entropyS°(298.15)
and enthalpyH°(298.15)- H°(0) deviate 17% and 10% from
the corresponding measured values.33 All this information is
collected in Table 1. In general terms, our results describe the
zero-pressure MgF2 rutile structure in rather good agreement
with the observed behavior. This is a necessary status for
extending the simulation to the study of the crystal response to
external pressure.
A set of magnitudes that are specially sensitive to computa-

tional details are those related to the volume dependence ofΘ,
since they involve third derivatives of the static lattice energy.
The most important factor in computing this set of properties
is the Grüneisen constantγ. According to our calculations,γ
) 1.959 at the equilibrium volume at 300 K. Using experi-
mental data at room temperature, we have obtainedγexptal )
1.34. This difference explains in part the discrepancy between
our computed thermal expansivityR ) 53.7× 10-6 K-1 and
the experimental one3 (32.4 × 10-6 K-1). This result is
illustrated in Figure 1 where, in spite of the good agreement
between the observed and computed HF+uCHF V(T) points,
the difference in slopes is apparent.

TABLE 1: Zero-Pressure Structural and Thermodynamic Equilibrium Properties of the MgF 2 Rutile Phasea

a c c/a u Elatt S°(298.15) H°(298.15)- H°(0)
static (HF) 8.7817 5.9802 0.6810 0.3044 -2851
static (HF+uCHF) 8.5262 5.8191 0.6825 0.3047 -3025
0 K (HF+uCHF) 8.576 5.847 0.6818 0.3048 -3005
300 K (HF+uCHF) 8.600 5.860 0.6813 0.3048 -2997 47.3 8.88
ref 19 (HF) 8.7626 5.8336 0.6657 0.3032
ref 16 8.674 5.788 0.6673 0.3036
experimental 8.721b 5.750b 0.6594b 0.3030b -2957c 57.2( 0.5c 9.91( 0.06c

8.733d 5.767d 0.6604d 0.30293d

aUnits for a andc are bohr, forElatt andH are kJ/mol, and forSare J/(mol K).b T ) 50 K. Reference 12.cRoom temperature. Reference 33.
dRoom temperature. Reference 7.

Figure 1. Zero-pressure temperature dependence of the unit cell
volume for the MgF2 rutile phase according to our HF and HF+uCHF
calculations. Symbols stand for experimental data of ref 3, except the
value at 50 K from ref 12.
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B. Equation of State. We start the study of pressure effects
by analyzing the static results at the HF and HF+uCHF levels.
The evolution of the unit cell lengthsa andc with p is shown
in Figure 2. As expected, the HF parameters are larger than
the HF+uCHF ones in the whole range of pressures, the
corresponding curves being nearly parallel for both parameters.
The slopes da/dp and dc/dp at zero pressure are slightly smaller
in the HF+uCHF stage. This result agrees with the expectation
of a less compressible MgF2 when correlation effects are
included in the calculation. We observe in Figure 2 thata
decreases with pressure more steeply thanc, revealing an
anisotropy under applied pressure. Thec/a ratio turns out to
be an increasing and almost linear function ofp. This larger
compressibility along thea direction agrees with the analysis
of the experimental elastic constant data.9 As in the zero-
pressure stage, the correlation energy corrections do not change
significantly thec/aHF ratios. For instance, at 100 GPac/a(HF)
) 0.7184 andc/a(HF+uCHF)) 0.7188. The temperature effect
on thec/a ratio at zerop is almost negligible, in agreement
with observations.3 Theuparameter varies slightly with external
pressure. From 0 to 100 GPa, it ranges 0.3040-0.3060 (HF)
and 0.3045-0.3065 (HF+uCHF). A slight dependence of the
internal coordinates with thermodynamic variables is common
in many crystals. Analysis of the data reported by Ming and
Manghnani11 givesa ) 8.50 andc ) 5.37b at 25 GPa. Our
computed values at this pressure (a ) 8.111 andc ) 5.609b)
deviate less than 5% from these experimental data.
To analyze theV(p) behavior we use theV(T,p)/V0(T) ) V/V0

Versus pdiagram (Figure 3). We find that the compressibility
of MgF2 increases withT and when the zero-point vibrational
effects are taken into account. We include in Figure 3 theV/V0
- p points computed with the experimental athermalB0 value
of Jones10 and B′0 ) 4.5. The latter values were obtained

assuming two different and well checked empirical EOS: the
frequently used Birch-Murnaghan form and the more recent
Vinet EOS (VEOS).34 We find that these two functional forms
yield almost coincident values along the exploredV(p)/V0 range.
Also, our HF+uCHF calculations predict a pressure dependence
of theV/V0 ratio in very good agreement with both EOS.
Our computed values for the zero-pressure isothermal and

adiabatic bulk moduli (BT(p) 0)) B0 andBS) and their pressure
and temperature derivatives are quantitatively compared with
other theoretical19 and experimental8-10,13data in Table 2. Once
again, our HF static predictions agree with the calculated values
from ref 19, being also close to the room temperature experi-
mental data. The inclusion of correlation corrections and
thermal effects give theoretical values deviating less than+7%
from the experiment (see also Figure 3).
A comparison between the isothermal and adiabatic bulk

moduli at zero pressure (B0, BS) allows us to investigate the
different response of MgF2 to the increase of pressure in
isothermal or adiabatic conditions. The computed values of
these two magnitudes in the HF+uCHF calculation are plotted
versusT in Figure 4. B0 andBS are nearly constant from 0 to
100 K and decrease almost linearly with increasing temperatures
for T > 200 K. As it is obvious from the relationBS ) B0 ×
(1 + RγT), B0 andBS coincide at zero temperature and diverge
whenT increases. At room temperature,dBS/dT ) -0.0157
GPa/K in the HF+uCHF calculation, which agrees very well
with the experimental value of Rai and Manghnani (-0.0160
GPa/K).8

The change of the compressibility of the crystal withp is
quantitatively analyzed throughB′0, B′S, and B′′0, the zero-
pressure first derivatives ofB0 andBSand the second derivative
of B0 with respect to pressure, respectively. Our HF+uCHF
predictions for the first two properties at 300 K areB′0 ) 4.26
andB′S ) 4.15. These numbers are reasonable, given that the
actual experimental data should lie between the ultrasonic
pulse-echo-overlap experiment in polycrystalline MgF2 (B′S)
5.06) of Rai and Manghnani8 and that the ultrasonic single-
crystal measurements (B′0 ) 3.85) of Vassilou.13 For B′′0 we
find small and negative values, as observed in other ionic
crystals.35

At this point, it is worthwhile to analyze more quantitatively
the modification of theV/V0 - p curves withT. Thakur and
Dwary36 have shown that theV/V0 - p experimental data of
NaCl (rocksalt phase) at 298, 500, and 800 K can be reduced
almost to a single curve by plottingV/V0 versusp/B0. We
observe in Figure 5 that our HF+uCHF EOS for MgF2 satisfy
this behavior fairly well. More specifically, for a givenp/B0
ratio, our computedV/V0 values atT ) 0 K andT ) 900 K

Figure 2. Pressure dependence of the unit cell lengths for the MgF2

rutile phase according to our static HF and HF+uCHF calculations.

Figure 3. Static (dashed),T ) 0 K (dotted), andT ) 300 K (solid)
equations of state for the MgF2 rutile phase according to our HF+uCHF
calculations. Squares and crosses stand for Birch-Murnaghan and Vinet
empirical equations of state, respectively.

Figure 4. Temperature dependence of the isothermal (B0) and adiabatic
(BS) zero-pressure bulk modulus of the MgF2 rutile phase according to
our HF+uCHF calculations.
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differ by less than a 3%. To study this issue further, we have
reduced the different sets of HF+uCHFp- V data at different
temperatures to the form given by the VEOS. In all cases, we
have found that the VEOS is satisfied with correlation coef-
ficients better than 0.9999 (see below), and the computedB′0
values increase very slightly withT. On the other hand, the
VEOS,34 gives aV/V0 - p/B0 curve independent ofT if B′0 is
T-independent. We conclude that the slight differences between
all theV/V0 - p/B0 curves in our calculations are only due to
the small variation ofB′0 with T.
As a final remark, it is interesting to analyze the consistency

of our simulation by comparing the computed EOS with the
general behavior found in many real solids. We use for this
purpose theuniVersal Vinet EOS and the fourth-order (in
energy) Birch EOS (BEOS), and find that both fit almost
perfectly to ourp - V data. For the VEOS, the correlation
coefficients are always better than 0.9999. For the BEOS, we
find root mean square deviations less than 2× 10-6 in all
fittings. We stress that ourp - V data satisfy the empirical
EOS of Vinet and Birch to a high accuracy and lead to values
of B0, B′0, and B′′0 fairly similar to those found through the
numerical procedure followed in Subsection II B (see Table
3).
C. Pressure-Induced Rutile to Fluorite Phase Transition.

It has been shown by Ming and Manghnani11 that polycrystalline

MgF2 undergoes a pressure-induced phase transformation from
the rutile structure to a distorted fluorite-type structure. These
authors found that, below 27 GPa, only the rutile structure is
present at room-T. They estimated the transition pressure (pt)
to be 30 GPa at room temperature and 19 GPa at 1573 K. In
a previous X-ray experiment, Dandekar and Jamieson5 did not
report any phase transformation in this crystal up toV/V0 )
0.913. From the EOS depicted in Figure 3, we expectp = 20
GPa for that value ofV/V0. This may explain the negative result
of Dandekar and Jamieson.
Our HF+uCHF results atT) 300 K for the rutile and fluorite

structures are illustrated in Figure 6. At zero pressure, theG
values of these two polymorphs are nearly coincident, both in
the static and finite temperature calculations. Asp increases,
the fluorite structure becomes more and more stable with respect
to the rutile structure. This underestimation of the stability of
the rutile phase can be traced back to the current implementation
of the aiPI method, where only spherical deformations of the
ionic electron densities are allowed, and multipole-multipole
electrostatic interactions are not properly accounted for.20,21

To obtain an insight on the effects of polarization, we have
considered an approximate semiclassical model37 in which (i)
the F- ion has a polarizability of 5.122 bohr,3,38 (ii) the
polarizability of Mg2+ is neglected, and (iii) the ionic wave
functions are kept spherically symmetrical in the electronic
structure calculation. The geometry of rutile structure was then
optimized as described in section II, and its Gibbs energy at
finite temperatures computed through the modified Debye
model. Our results show that atT ) 300 K andp ) 0 GPaG
decreases by 12.7 kJ/mol, giving rise topt ) 4 GPa. This value
is our best prediction of the thermodynamic boundary between
the phases.
It is possible to obtain an upper limit for the transition from

mechanical reasoning. To do so, we have computed the elastic
constantCs ) (C11 - C12)/2 for pressures from 0 to 80 GPa.
The results are plotted in Figure 7.Cs decreases withp with a

TABLE 2: Bulk Moduli and Related Properties of the MgF 2 Rutile Phase

B0 (GPa) BS (GPa) B′0 B′S B′′0 (GPa-1) dB0/dT dBS/dT

static (HF) 99.06 99.06 4.25 4.25 -0.062
static (HF+uCHF) 122.32 122.32 4.16 4.16 -0.049
0 K (HF+uCHF) 116.93 116.93 4.13 4.13 -0.050
300 K (HF+uCHF) 111.10 114.59 4.26 4.15 -0.055 -0.0336 -0.0157
ref 19 (HF) 103.3
ref 16 109.7 4.38
experimental 100.99a 5.06a -0.0160a
103.4b

106.2c

101.7d 3.85d

aRoom temperature. Reference 8.bRoom temperature. Reference 9.c Athermal limit. Reference 10.dRoom temperature. Reference 13.

Figure 5. Reduced equation of state for the MgF2 rutile phase. Squares
stand for an empirical Vinet equation.

TABLE 3: B0, B′0, and B′′0 Parameters for MgF2 (Rutile) in
the Static Hartree-Fock (HF, First Row) and Hartree-Fock
Plus Correlation (HF+uCHF, Second Row) Calculations
According to the Numerical, Vinet, and Fourth-Order Birch
EOS

EOS type B0 (GPa) B′0 B′′0 (GPa-1)
Vinet 98.15 4.38 -0.066

122.21 4.11 -0.047
Birch 97.44 4.78 -0.054

121.55 4.28 -0.040
numerical 99.06 4.25 -0.062

122.34 4.15 -0.049

Figure 6. Phase stability diagram according to our static HF+uCHF
calculations.
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zero-pressure slopeC′s ) -0.48, andCs becomes negative at
about 45 GPa. This means that, according to our calculations,
the rutile structure is mechanically unstable above this pressure.
At p ) 0, we predictCs = 24 GPa, which is in excellent
agreement with the experimental value given by Davies (=25
GPa).9 Striefler and Barsch39 obtainC′s ) -0.95 using a rigid-
ion model with effective ionic charges and only first- and
second-neighbor interactions. This value is probably too
negative since they predict the mechanical instability at 25 GPa,
below the estimated transition pressure.11

It is also to be noticed that, due to the presence of hysteresis,
the experimental determination of the transition pressure during
loading processes gives actually an upper limit for the true
thermodynamic value ofpt. Our best estimation forpt is 4 GPa,
so we predict that the experimental loading transition pressure
should be above this value, as it actually is. On the other hand,
based on mechanical stability considerantions, we have set an
upper limit of 45 GPa for this pressure. We conclude that the
thermodynamic and mechanical bounds computed in this work
are compatible with the observedpt.
D. Topological Atomic Properties. Let us now examine

the topological structure of the rutile phase of MgF2 using our
aiPI computed electronic densities. The local symmetries of
the Mg2+ and F- ions are, respectively,D2h andC2V. This fact
forces the symmetry of their topological ionic basins. We have
found that the Mg2+ basin is a slightly distorted cube, with 2+
4 equivalent bumped faces. Since to each face of an atomic
basin there is associated a bond of the lattice, the coordination
index of the cation is 6 (2+ 4). At null pressure, the Mg2+

bonded radii are 1.637 and 1.661b, respectively. The electron
density (0.0396, 0.03511b-3) and its laplacian (0.3926, 0.3508
b-5) at the bond points show that the first Mg-F bond is slightly
stronger than the second. The computed total ionic volume is
29.279b3.
The lower symmetry of the anion makes its shape harder to

describe. It shows triangular coordination (1+2) with respect
to the cations, with bonded radii equal to 2.037 and 2.082 bohr,
respectively; and nine-fold coordination (1+ 8) with respect
to the fluorides, with radii 2.3547 and 3.0858b. This great
separation among the different fluoride radii reflects the larger
deformability of the anion.
At first sight, the existence of anion-anion bonds may sound

a little perturbing, but it is a topological requirement that was
found to be important for understanding the stability of the
lattices.24 In our case it also appears that the larger bond is the
weaker and has larger coordination index. The fluoride volume
turns out to be 89.404b3, approximately three times the cationic
volume. It sould be stressed, however, that a bond in Bader’s
sense is a new objective concept, and that its relation to chemical

bonding theory has still to be worked out in detail, at least in
those cases where classical bond analogues are lacking.
We found an anion basin with 12 faces. Figure 8 shows the

atomic basins of the coordination shell around a central fluoride.
The four frontal coordinating anions have been clipped out from
the figure to allow a clearer view of the cations. Several
important facts appear from a closer examination of the picture.
First, notice that the homeomorphism between atomic basins
and polyhedra is not only of a mathematical nature. The basins
areactually recognizable as polyhedra. Second, the basins fill
completely the space. The stringent requirements posed by
topology on the number and types of critical points in the lattice
force the quasi-bidimensional wings shown by the cations. These
wings avoid a forbidden anion-anion contact at several places
and, therefore, the formation of more anion faces. The 2+ 4
coordination for the cation and the 1+ 2, 1+ 8 coordination
for the anion are easily recognized. Finally, it is interesting to
observe how the bumps of the cation faces correspond to
depressions in the anion faces, reinforcing the association of
hardness for cations and deformability for anions.
Regarding atomic properties, we will only comment on results

for the integration of the charge density over the basins. At
null pressure, the charge found for the fluoride is-0.942 |e|.
This result reveals a very ionic crystal structure. Pressure
induces a reduction of the lattice parameter and a rather
important reorganization of the electronic density. The effects
of these changes on the topology of the density and bonding
properties are not straightforward and have not been reported
previously. We have not found, up to now, any crystalline phase
whose electronic topological structure changes as the lattice
parameters shrink. MgF2 is not an exception and keeps the same
general pattern described above. Figure 9 shows the evolution
of the different radii with thea lattice parameter. All of them
show a practically perfect linear relation withaand rather similar
slopes. This surprising linear behavior admits a very simple
rationalization. It is easy to show that, if the density along a
bond line is mainly the sum of exponentially decreasing
functions located at the two bonded nuclei, the position of the
bond critical point is a linear function of the internuclear
separation. This is certainly the case in many ionic materials.
It is interesting to observe that the difference in the radii of

the two different Mg-F bonds increases with pressure, the
stronger bond displaying a slightly greater variation than the
weaker one. This result can be understood as a consequence
of the different deformability of the two ionic species. Such
difference is clearly illustrated by the pressure dependence of
the ratio of topological ionic volumes,r ) V(F-)/V(Mg2+). We
find that r is also linear witha and decreases from 3.053 at
null pressure to 2.622 at 100 GPa, revealing that the anion
compression is much easier. Anions changes its volume by a
factor 1.50 on compression, cations by a factor 1.29.
The topological charges vary also linearly with pressure. The

fluoride charge decreases, in absolute value, from-0.942 |e|

Figure 7. Pressure dependence of the shear constant for the MgF2

rutile phase according to our HF and HF+uCHF calculations.

Figure 8. Ionic basins for the rutile phase of MgF2 at zero pressure.
A complete fluoride (center) coordination shell is shown, except four
frontal anions that have been excluded to improve the vision of the
cations.
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at null pressure to-0.913|e| at 100 GPa. Thus, Bader’s ionicity
of this crystal decreases very slowly with pressure, in agreement
with qualitative expectations, based on classical ideas. We must
also notice that the relation between Bader’s ionicity or
covalency and orbital mixing should be further investigated.

IV. Conclusions

We have investigated the structural and thermodynamic
properties of the MgF2 crystal in wide ranges of pressure and
temperature using the quantum-mechanical ab initio perturbed
ion method. Vibrational contributions on these properties have
been included by means of a quasi-harmonic Debye model. The
theory of Bader22 has been adopted to analyze the topology of
the electron density of this system.
Our results for the static properties at zero pressure are in

rather good agreement with the experiment when correlation
energy corrections are included in the calculation. The quasi-
harmonic Debye model accounts successfully for the change
with T of the thermodynamic properties studied here. TheElatt
versusV curve given by the ab initio perturbed ion model yields
EOS in agreement with the general behavior found in real solids.
Our results are consistent with measured elastic moduli.
According to criteria of thermodynamic and mechanical stability,
we confine the rutile to fluorite transition pressure in the loading
process to the range 4-45 GPa. Experiments at room and high
temperature give values for this property within this theoretical
range. The exploration of this issue suggests, however, the need
of a generalization of theaiPI methodology to allow for
nonspherical distortions of the ionic electron densities. This
improvement will probably increase the lower boundary forpt.
The bonding picture emerging from the topological study is

coherent with classical thinking: small, nonpolarizable cations
surrounded by larger polarizable anions. An interesting fact,
already found in other systems,23 is the existence of anion-
anion bonds, whose importance in the overall stabilization of
the lattice needs to be studied. We have also performed the
integration of several properties over the different ionic basins,

yielding ionic charges and volumes that classify MgF2 as a
highly ionic compound, the degree of ionicity decreasing with
increasing pressure.
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Figure 9. Variation of the topological bond radii of the rutile phase
of MgF2 with the lattice parametera. When several bonds of the same
type are present, they are distinguished by a numeral.
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